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Chapter 1

The Theoretical
Foundation of Reduced
Basis Methods

Ronald DeVore∗

1.1 Introduction
The main theme of this volume is the efficient solution of families of stochastic or para-
metric partial differential equations. This article focuses on the theoretical underpinnings
of such methods. It shows how concepts from approximation theory, such as entropy or
widths, can help to quantify, a priori, how well such methods can perform. This theory
is then used to analyze one of the primary numerical vehicles, Reduced Basis Methods
(RBMs), for parametric equations. A particular emphasis is placed on understanding the
performance of greedy algorithms for selecting basis in RBMs.

Reduced basis methods have met with much computational success that is amply de-
scribed in other contributions of this volume. The present article sits at the other end
of the spectrum since it is exclusively devoted to the theoretical aspects of this subject.
The development of a theory for reduced bases is of great interest since it addresses one
of the most challenging problems in modern numerical computation, namely the com-
putational recovery of high dimensional functions. The theory we present here is far
from complete and, indeed, one of the goals of the present exposition is to organize our
thinking and illuminate some obvious questions whose solution may advance both the
theoretical and the computational aspects of reduction methods.

This article will exclusively deal with linear elliptic problems. This restriction was
imposed because, quite frankly, not enough is known theoretically in other settings to
warrant much discussion. However, let us be clear that theoretical developments for
other problems will be extremely interesting and could help advance other application
domains. While this article will only treat parametric problems, the results put forward
have relevance for stochastic problems via chaos expansions.

What is written here is a very personalized view and understanding of this subject.
The form of this article has been strongly influenced by discussions with many individ-
uals. I mention them here because any of them would justifiably be co-authors of this
presentation.

∗This research was supported by the Office of Naval Research Contracts ONR N00014-11-1-0712, ONR
N00014-12-1-0561, ONR N00014-15-1-2181 and the NSF Grant DMS 1222715.
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2 Chapter 1. The Theoretical Foundation of Reduced Basis Methods

My first exposure to reduced bases occured many years ago when visiting Albert Co-
hen at Paris VI. I had the fortune to be there when Yvon Maday and his collaborators were
proving their first results on greedy algorithms and magic points. It was clear this sub-
ject had a large intersection with approximation theory and yet seemed to be completely
missed by the approximation community. Albert and I began reflecting on reduced mod-
elling and naturally involved our collaborators Wolfgang Dahmen, Peter Binev, Guer-
gana Petrova, and Przemek Wojtaszcsyk. I organized a small seminar on this subject at
TAMU which includes (in addition to Guergana) Andrea Bonito, Bojan Popov, and Ger-
rit Welper. I thank all of these people for helping my understanding of the subject.

Subsequent to the writing of this Chapter, the survey article [7] was written and is
already in print. Some topics considered in this chapter appear in expanded form in [7].
So if the reader finds the current exposition too terse on a certain topic, the chances are,
it is dealt with in more detail in [7].

1.2 Elliptic PDEs
The focal point of this article is the study of numerical algorithms for solving a family of
elliptic equations. Each of these elliptic equations is of the form

−∇ · (a∇u) = f in D , u|∂ D = 0, (1.1)

where D ⊂Rd is a bounded Lipschitz domain, and the right side f is in H−1(D) 2. Here,
a = a(x) is a scalar function which is assumed to be in L∞(D) and satisfies the ellipticity
assumption: there exist 0< r < R such that

r ≤ a(x)≤ R, x ∈D . (1.2)

We could just as well consider the case where a is replaced by a positive definite matrix
function A(x)with a similar theory and results, only at the expense of more cumbersome
notation. In this section, we begin by recalling what is known about the solution to (1.1)
when a and f are fixed. The later sections of this paper will then turn to the question of
efficiently solving a family of such problems.

There is a rich theory for existence and uniqueness for the equation (1.1) which we
briefly recall. A much expanded discussion of this topic can be found in [7]. Central to
this theory is the Sobolev space H 1

0 (D ,a) (called the energy space) which is a Hilbert space
equipped with the energy norm

‖v‖H 1
0 (D ,a) := ‖a|∇v |‖L2(D). (1.3)

That this is a norm follows from a theorem of Poincaré which says that

‖v‖L2(D)
≤CD‖v‖H 1

0 (D ,a), (1.4)

for every Lipschitz domain D and in particular for every polyhedral domain D .
If a, ã both satisfy the ellipticity assumption, then the norms for H 1

0 (a) and H 1
0 (ã) are

equivalent. If we take a = 1, we obtain the classical space H 1
0 (D , 1), which in going further

is simply denoted by H 1
0 = H 1

0 (D). The dual of H 1
0 (D) consists of all linear functionals

2We use standard notation for Sobolev spaces throughout this chapter. The space W s (Lp (D)) is the Sobolev
space with smoothness index s in Lp (D). For the special case p = 2, this space is typically denoted by H s in the
numerical and PDE communities.
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1.2. Elliptic PDEs 3

defined on this space and it is usually denoted by H−1(D) and its norm is defined by
duality. Namely, if λ ∈H−1(D), then

‖λ‖H−1(D) := sup
‖v‖H1

0 (D)
≤1
|〈λ, v〉| (1.5)

The solution ua of (1.1) is defined in weak form as a function u ∈H 1
0 (D) that satisfies

∫

D

a(x)∇ua(x) · ∇v(x)d x =
∫

D

f (x)v(x)d x. for all v ∈H 1
0 (D). (1.6)

This formulation shows that the Lax-Milgram theory applies. In particular, the ellipticity
assumption is a sufficient condition for the existence and uniqueness of the solution ua .
Under this assumption, the solution satisfies the estimate

‖ua‖H 1
0 (D)
≤C0

‖ f ‖H−1(D)

r
. (1.7)

The same theory applies even if a is complex valued. Now the lower ellipticity condition
replaces a by Re(a) in (1.2) and the upper condition is that |a| is uniformly bounded.

There is also a general principal of perturbation for elliptic equations which shows to
some extent the smooth dependence of the solution on the diffusion coefficient a. If a, ã
are two such coefficients with the same ellipticity constants r, R, then the solutions u and
ũ with identical right side f will satisfy

‖ua − uã‖H 1
0 (D)
≤C0

‖a− ã‖L∞(D)

r
. (1.8)

The bound (1.8) shows that the mapping a → ua is Lipschitz continuous. Actually,
this mapping is in a certain sense analytic as will be explained in §1.3.1. This smooth
dependence is at the heart of reduced modelling and so it will be of large concern to us as
we proceed.

1.2.1 Other Perturbation Results

In some applications, the coefficients a, while bounded, are not continuous. In such ap-
plications, they may have discontinuities along curves or higher dimensional manifolds in
Rd . This makes (1.8), more or less, useless since it requires exact matching of the discon-
tinuities of a and ã. A related issue is that in numerical methods, the diffusion coefficient
a is approximated by an ã and one will not have that ‖a− ã‖L∞

is small since the discon-
tinuity cannot be matched exactly. Thus, we need other perturbation results which are
more amenable to such applications. Results of this type were given in [4] in which L∞
perturbation is replaced by Lq perturbation for certain q with q <∞, in the form of the
following result.

For any p ≥ 2, the functions ua and uã satisfy

‖ua − uã‖H 1
0 (D)
≤ r−1‖∇ua‖Lp (D)

‖a− ã‖Lq (D)
, q :=

2 p
p − 2

∈ [2,∞] (1.9)

provided ∇ua ∈ Lp (D). Notice that the case p = 2 is (1.8). In order for (1.9) to be
relevant for discontinuous a, ã, we need that ∇ua is in Lp for some p > 2. It is known
that for every Lipschitz domain D , there is P > 2 such that for 2≤ p ≤ P , one has
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4 Chapter 1. The Theoretical Foundation of Reduced Basis Methods

COND-p: For each f ∈W −1(Lp (D)), the solution u = u1 to (1.1) with a = 1 and right side
f satisfies

|u|W 1(Lp (D))
:= ||∇u||Lp (D)

≤Cp‖ f ‖W −1(Lp (D))
, (1.10)

with the constant Cp independent of f .

The assumption f ∈W −1(Lp (Ω)) is a rather mild assumption on the right side f and leads

to an Lq perturbation with q := 2 p
p−2 .

In this special case a = 1 (the case of Laplace’s equation), the validity of COND-p is
a well studied problem in Harmonic Analysis (see for example Jerison and Kenig [18]).
In fact, in this setting, one can take P > 4 when d = 2 and P > 3 when d = 3. The case
of general a in (1.9) is proven by a perturbation argument (see [4] for details). It is also
known that if D is convex then we can take P =∞.

One can extend the above results from a = 1 to general a by using a perturbation
result (see Proposition 1 in [4]).

Perturbation Property: If the diffusion coefficients a, ã satisfy the strong ellipticity con-
dition for some r, R, then there is a P ∗ depending on this r, R and on the domain D such
that whenever p ∈ [2, P ∗], and f ∈W −1(Lp (D)), then

‖ua − uã‖H 1
0 (D)
≤C1‖ f ‖W −1(Lp (D))

‖a− ã‖Lq (D)
, (1.11)

where q := 2 p/(p − 1).

The strongest perturbation result occurs when we can take P ∗ =∞. In this case, the L2
norm appears on the right side of (1.11).

Let us emphasize that assumptions on f other than f ∈ W −1(Lp (D)) may lead to
∇u ∈ Lp for a wider range of p. This would, in turn, give the perturbation for a wider
range of q .

1.3 Parametric Elliptic Equations
We turn now to the principle topic of this article, namely, the solution of a family of
elliptic equations. We are not interested in solving (1.1) for just one diffusion coefficient
a but rather a familyA of such coefficients. We always assume that the familyA satisfies

Uniform Ellipticity Assumption: There exists r, R such that for each a ∈A , we have

r ≤ a(x)≤ R, x ∈D . (1.12)

This family is assumed to be a compact subset of either L∞(D) or of an appropriate
Lq (D) space for which the following property holds:

Lq (D) stability of A : We say this property holds for the given f , if there is a constant
C0 such that for all a, ã ∈ Lq (D) we have

‖ua − uã‖H 1
0 (D))
≤C0‖a− ã‖Lq (D)

. (1.13)

Of course this property always holds for q =∞. We have already discussed in the previ-
ous section, the fact that this will also hold for a range of Q ≤ q ≤∞, with 2≤Q <∞,
under very mild restrictions on f . Notice that the most favorable range is when Q = 2.
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1.3. Parametric Elliptic Equations 5

Our goal is to build a black box solver such that when presented with any a ∈ A ,
the solver will provide in a very fast manner an online computation of ua = ua, f , a ∈A .
To begin the discussion, let us recall that there are already in existence Adaptive Finite
Element solvers which when given a ∈A , will approximate in a rather efficient way the
solution ua . What governs the accuracy of these adaptive solvers is the smoothness of ua
which in turn is determined by properties of the physical domain D and the regularity
of the right side f . Indeed, the performance of such adaptive methods is governed by the
regularity of the solution ua in a certain scale of Besov spaces corresponding to non linear
approximation [2, 3] and this Besov regularity can be derived from the smoothness of f
(see [11]). We do not wish to get into details here but only mention that the typical per-
formance of this approach is to obtain convergence of order O(n−β) for n computations,
where β is typically small. For example, if f ∈ L2(D) and the domain is Lipschitz, then
β≤ 1 if d = 3.

The motivation behind reduced basis methods is the smoothness of the ua with vary-
ing a. We can view the set

U :=UA :=UA , f := {ua : a ∈A}, (1.14)

as a manifold in H 1
0 (D) and in light of our earlier discussion of perturbation for elliptic

equations, this manifold inherits a certain smoothness from that ofA . If this smoothness
is high enough, then it is reasonable to expect we can build solvers that perform better
than the adaptive pde solvers since the latter never take advantage of the smoothness of
this manifold. Our main interest is to quantify when this is indeed true.

We give two examples of setsA of diffusion coefficients, which will guide our discus-
sion.

1.3.1 Affine Dependence

In this setting, we are given a family of functions ψ j (x), j = 1,2, . . . , defined on the phys-
ical domain D . We let U be the unit cube in `∞ := `∞(N). Hence, y ∈ U means that
y = (y1, y2, . . . ) with |y j | ≤ 1. For any such y ∈U , we define

a(x, y) = a(x)+
∑

j≥1

y jψ j (x), (1.15)

and take A = {a(x, y) : y ∈ U } as our family of diffusion coefficients. Of course, we
shall also need additional assumptions to guarantee that the series in (1.15) converges. A
typical assumption is that the sequence (‖ψ j‖L∞(D)

) is in `p for some p ≤ 1. We assume
in going further that the indices have been rearranged so that this sequence (‖ψ j‖L∞(D)

)
is monotonically decreasing.

One may wonder why we consider an infinite number of parameters y j in (1.15). The
answer is twofold. First of all, a standard way of treating stochastic equations is to con-
sider chaos expansions which can be converted to parametric equations but the number
of parameters will be infinite. A second reason is that even when treating a parametric
problem with a finite number of parameters m, we want to avoid convergence estimates
that blowup with m. By treating the case of an infinite number of parameters one can
sometimes obtain constants independent of m.
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6 Chapter 1. The Theoretical Foundation of Reduced Basis Methods

Figure 1.1. The region marked Ω corresponds to D−.

1.3.2 A Geometrical Setting

Let D = [0,1]2 for simplicity and let φ(x), x ∈ [0,1] be a LipM 1 function3 taking values
in [0,1]. Then the graph of ϕ separates D into two domains D± corresponding to the
portion D− of D below the graph and the portion D+ above the graph (see Figure 1.3.2).
We consider diffusion coefficients

aφ(x) := χD−
+ 2χD+

. (1.16)

These coefficients have a jump across the curve. The purpose of this toy example will be
to see how to handle discontinuities in a.

These two examples sit at opposite extremes. The affine model is the most favorable
for RBMs since, as we shall see, the manifold U of solutions is analytic. The geometric
model, on the other hand, gives a manifold that is not very smooth because of the discon-
tinuities in a. So, it provides a real challenge for RBMs. This model may however prove
useful in certain application domains such as shape optimization.

1.4 Evaluating Numerical Methods
Numerical methods for solving partial differential equations are based on some form of ap-
proximation. Understanding the core results of approximation theory, not only suggests
possible numerical procedures, but also determines the optimal performance a numerical
method can have. This optimal performance is described by the concepts of entropy and
widths which is the subject of this section.

1.4.1 Linear Methods

Methods of approximation are broadly divided into two classes: linear and non linear
methods. In linear approximation, the approximation process takes place from a sequence

3The space LipM 1 consists of all continuous functions satisfying | f (x) − f (x ′)| ≤ |x − x ′| for all points
x ∈ [0,1].
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1.4. Evaluating Numerical Methods 7

of finite dimensional linear spaces Xn , n = 1,2, . . . , with increasing dimensions. By using
the space X0 := {0} and, if necessary, repeating the spaces in this sequence, we can assume
dim(Xn)≤ n. Increasing n results in improved accuracy of the best approximations from
Xn .

In our case of parametric equations, we want to choose the linear space Xn so that
it approximates well all of the elements ua ∈ UA in the norm of H 1

0 (D) (or perhaps
H 1

0 (D ,a)). Once such a space Xn is found then we can build a numerical method for
solving problems. For example, we could use the Galerkin solver corresponding to Xn .
This would require the on-line assembly of the stiffness matrix and the solution of the
corresponding matrix problem.

For each a ∈A , we have the error

E(ua ,Xn) := E(ua ,Xn)H 1
0 (D)

:= inf
g∈Xn

‖ua − g‖H 1
0 (D)

. (1.17)

Notice that because of the UEA, the norm ‖ · ‖H 1
0 (D)

is equivalent to ‖ · ‖H 1
0 (D ,a) with

constants depending only on r and R. Hence, E(ua ,Xn) also can be used to measure the
approximation error in H 1

0 (D ,a). The effectiveness of the space Xn for our parametric
problem is given by

E(UA ,Xn) := sup
a∈A

E(ua ,Xn), (1.18)

which is the error on the classUA .
The best choice of a linear space Xn is the one which gives the smallest class error.

This smallest error for the compact setUA is called the Kolmogorov n-width ofUA . We
can define this width for any compact set K in any Banach space X by

dn(K)X := inf
dim(Y )=n

sup
u∈K

inf
g∈Y
‖u − g‖X , n = 0,1, . . . . (1.19)

So the n-width dn(UA )H 1
0 (D)

gives the optimal performance we can achieve when using
linear methods to solve the family of parametric equations (1.1) for all a ∈A . Determin-
ing dn and finding an optimal or near optimal subspace is a difficult problem which we
will return to.

1.4.2 Non Linear Methods

It is now well understood that non linear methods of approximation and numerical meth-
ods derived from them often produce superior performance when compared to linear
methods. Classical non linear methods include approximation by rational functions, free
knot splines, n-term approximation, and adaptive partitioning. The basic idea in non lin-
ear approximation is to replace the linear space Xn by a non linear spaceΣn depending on
n parameters. Loosely speaking, one can view Σn as an n-dimensional manifold.

We discuss, in some detail, the case of n-term approximation in a Banach space X since
it has promise in designing numerical algorithms for parametric equations. The starting
point for this form of approximation is a collection D ⊂X of functions which is called a
dictionary. Given a dictionary, we define the set

Σn(D) := {
∑

g∈Λ
cg g : Λ⊂D, #(Λ)≤ n}, (1.20)

of all n-term linear combinations of elements from D. The elements in Σn are said to be
sparse of order n. Notice that the space Σn is not a linear space. If we add two elements
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8 Chapter 1. The Theoretical Foundation of Reduced Basis Methods

from Σn , we will generally need 2n terms to represent the sum. An important case is
when the dictionary D = {ϕ j }∞j=1 where the functions ϕ j , j = 1,2, . . . , form a basis for
X . In this case, any function in Σn is described by 2n parameters, namely the n indicies
j ∈Λ and the n coefficients cϕ j

.
Suppose now that X = H is a Hilbert space and D = {ϕ j }∞j=1 is an orthonormal

basis forH . It is very easy to describe the best approximation to a given function v ∈
H from Σn and the resulting error of approximation. We expand v in its unique series
representation

v =
∞
∑

j=1

c j (v)ϕ j . (1.21)

Given any sequence (a j ) j≥1 of real numbers which tend to zero as j → ∞, we denote
by (a∗k )k≥1 the decreasing rearrangement of the |a j |. Thus, a∗k is the k-th largest of these
numbers. For each k, we can find a λk such that a∗k = |aλk

| but the mapping k 7→ λk is
not unique because of possible ties in the size of the entries. The following discussion is
impervious to such differences. If we apply rearrangements to the coordinates {c j (v)} j≥1

and denote byΛn :=Λn(v) := { j1, . . . , jn} the indices of a set of n-largest coefficients, then
a best approximation to u ∈H from Σn is given by the function

Gn v :=
n
∑

k=1

c jk
(v)ϕ jk

=
∑

j∈Λn

c j (v)ϕ j , (1.22)

and the resulting error of approximation is

σn(v)
2
H := ‖v −Gn v‖2

H =
∑

j /∈Λn

|c j (v)|
2 =

∑

k>n

(c∗k (v))
2. (1.23)

In particular, σ0(v) = ‖v‖H . While best approximation from Σn is not unique, the ap-
proximation error σn(v)H is uniquely defined. Also, note that σn(v)H = σn(ṽ)H if v
and ṽ have the same coefficients up to a permutation of the indices.

We can use (1.23) to characterize the functions v ∈ H which can be approximated
with order O(n−r ), r > 0, in terms of the coefficients c j (v). Let us denote by A r =
Ar ((Σn)

∞
n=1,H ) this set of functions (A r is called an approximation class) and equip it

with the norm
‖v‖A r := sup

n≥0
(n+ 1)rσn(v)H . (1.24)

Given an r > 0, we define p by the formula

1
p
= r +

1
2

. (1.25)

Notice that p < 2. The space w`p (weak `p ) is defined as the set of all a= (a j ) j≥1 whose
decreasing rearrangement (a∗k )k≥1satisfies

k1/p a∗k ≤M , k ≥ 1, (1.26)

and the smallest M = M (a) for which (1.26) is valid is the quasi-norm ‖a‖w`p
of a in this

space. Notice that w`p contains `p and is slightly larger since it contains sequences whose
rearrangement behaves like k−1/p which barely miss being in `p .
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1.4. Evaluating Numerical Methods 9

We claim that, with c := c(v) := {c j (v)} j≥1,

A r :=A r (H , (Σn)n≥1) = {v : c(v) ∈ w`p}, (1.27)

and ‖c(u)‖w`p
is equivalent to ‖u‖A r . Indeed, if c(v) ∈ w`p , then for any n ≥ 1, we have

σn(v) =
∑

k>n

(c∗k (v))
2 ≤ ‖c(v)‖2

w`p

∑

k>n

k−2r−1 ≤ 1
2r
‖c(v)‖2

w`p
n−2r . (1.28)

In addition,

‖v‖2
H = ‖c(v)‖

2
`2 ≤ ‖c(v)‖2

w`p

∑

k≥1

k−2r−1 ≤ (1+ 1
2r
)‖c(v)‖2

w`p
. (1.29)

This shows that ‖v‖A r ≤ (1+ 1
2r )

1/2‖c(v)‖w`p
.

To reverse this inequality, we note that for any k ≥ 1, the monotonicity of c∗(v) gives

2 j (c∗2 j+1(v))2 ≤
2 j+1
∑

k=2 j+1

(ck (v)
∗)2 ≤ σ2 j (u)2 ≤ |v |2A r 2−2 j r . (1.30)

For any n, we choose j so that 2 j ≤ n < 2 j+1. If j > 0, we obtain from the monotonicity
of c∗(v) that

c∗n(v)≤ c∗2 j (v)≤ 2r+1/2|v |A r 2−(r+1/2) j = 21/p |v |A r 2− j/p ≤ 22/p |v |A r n−1/p . (1.31)

On the other hand, we clearly have

c∗1 (v)≤ ‖v‖H ≤ ‖v‖A r . (1.32)

This gives ‖c(v)‖w`p
≤ 22/p‖v‖A r and completes the proof of the equivalence.

In numerical settings, one cannot implement n-term approximation in the form we
have just presented since it would require the computation of all coefficients of v and a
rearrangement of them. What is done in practice is one chooses a value N dependent on n
and selects the best n-term approximation from the dictionary DN := {ϕ j }Nj=1. A typical
choice of N is N = nA where A is a fixed integer.

There is another useful view of n-term approximation in this last setting. We can
form from {ϕ1, . . . ,ϕN } all subsets {ϕi}i∈Λ, #(Λ) = n, which are linearly independent.
Then each XΛ := span{xi : i ∈ Λ} is a linear space of dimension n. There are at most
�N

n

�

≤ [enB−1]n such subspaces. Then, n-term approximation can be viewed as taking one
of these linear spaces and using it to approximate v. The space chosen can depend on v.

1.4.3 Non Linear Widths

There have been several definitions of non linear widths that have been proposed to mea-
sure optimal performance of non linear methods. We mention the two that seem most
relevant for the analysis of reduced basis methods. The first of these is the manifold width
[12] which matches well numerical algorithms based on non linear approximation. Let
X be a Banach space and K one of its compact subsets. To define this width, we consider
two continuous functions. The first function b maps each element x ∈ K into Rn and
therefore picks out the parameters to be used in approximating x. The second function
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10 Chapter 1. The Theoretical Foundation of Reduced Basis Methods

M maps Rn into the setM (which we view as an n-dimensional manifold although we
do not assume anything about the smoothness of the imageM ). The manifold width of
the compact set K is then defined by

δn(K)X := inf
M ,b

sup
x∈K
‖x −M (b (x))‖X . (1.33)

For typical compact sets K of functions, the manifold widths behave like the entropy
numbers defined below. For example, if K is the unit ball of any Besov or Sobolev space
of smoothness s which compactly embeds into Lp (Ω) with Ω ⊂ Rd a Lipschitz domain,
then (see [13])

C0n−s/d ≤ δn(K)Lp (Ω)
≤C1n−s/d , (1.34)

with C0,C1 independent of n. We see in (1.34) the curse of dimensionality in the appear-
ance of d in the exponent of n. In order to obtain just moderate rates of convergence with
n→∞ we need s to be comparable with d .

A second width, introduced by V. Temlyakov [26], fits the definition of n-term ap-
proximation. It considers any collection (called a library)X := {X j }Nj=1, of n dimensional
subspaces of X . The approximation error defined by

E(v,X )X := inf
1≤ j≤N

dist(v,X j )X , (1.35)

is another type of n-term approximation. This leads us to define the library widths

d L
n,N (K)X := inf

X
sup
v∈K

E(v,X )X , (1.36)

with the infimum taken over all such collections X . This is another type of non linear
width. Typically, we would like to eliminate N from the above definition. Similar to the
restrictions on dictionaries, one usually assumes that the the number N of bases is of the
form N = nA for some fixed integer A. With this assumption dn,N now only depends on
n.

Let us note that the definition of library widths includes approximation from a finite
dictionary. Namely, if D is a dictionary with #(D) = m, then there are

�m
n

�

subspaces
X j of dimension ≤ n that can be formed using n elements from the dictionary as a span-
ning set. Thus, with N =

�m
n

�

, the library widths allows in the competition all n-term
approximations from D. However, the library width allows more general sequences of
subspaces X j in its definition since they do not have to be organized as coming from a
fixed dictionary. When the subspaces X j all come from a fixed dictionary of size m as
discribed above then the corresponding width

dn,N (K)X := inf
D

sup
v∈K

σn(K ,D)X , (1.37)

is called the dictionary width of K .

1.4.4 Entropy Numbers

Another useful concept in our analysis of reduced basis methods will be the entropy num-
bers of a compact set K ⊂ X where again X is a Banach space. If ε > 0, we consider all
possible coverings of K ⊂

⋃m
i=1 B(xi ,ε) using balls B(xi ,ε) of radius εwith centers xi ∈X .
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1.4. Evaluating Numerical Methods 11

Figure 1.2. A compact set K and its ε cover.

The smallest number m =Nε(K)X , for which such a covering exists, is called the covering
number of K . The Kolmogorov entropy of K is then defined as

Hε(K)X := log2(Nε(K))X . (1.38)

The Kolmogorov entropy measures the size or massivity of K . It has another impor-
tant property of determining optimal encoding of the elements of K . Namely, if x ∈ K
then we can assign to x the binary bits of an index i for which x ∈ B(xi ,ε). Each x is then
encoded to accuracy ε with ≤ dHε(K)X e bits and no other encoder can do better for K .

It is frequently more convenient to consider the entropy numbers

εn(K)X := inf{ε : Hε(K)X ≤ n}. (1.39)

Typically, εn(K)X decay like n−r for standard compact sets. Not only does εn(K)X tell us
the minimal distortion we can achieve with n bit encoding, it also says that any numerical
algorithm which computes an approximation to each of the elements of K to accuracy
εn(K)X will require at least n operations.

An important issue in optimal performance of the standard numerical algorithms for
pdes are the entropy numbers of the classical smoothness spaces. If K is the unit ball
U (W s (Lp (Ω)) of a Sobolev space, or a unit ball U (B s

q (Lp (Ω)) of a Besov space, then for
any Lebesgue space X = Lµ(Ω),

εn(K)X ≥C n−s/d , n = 0,1, . . . . (1.40)

This result manifests the massivity of these compact sets as the dimension d increases and
exhibits fully the curse of dimensionality.

1.4.5 Comparison of Widths

Concepts like n-widths are used to give bounds for the best possible performance of nu-
merical algorithms. There are general comparisons between the different widths that are
useful in making such evaluations. Let us mention those that will prove most useful for
us. For any compact set K in a Banach space X , we always have (see [12]),

δn(K)X ≤ dn(K)X , n ≥ 1. (1.41)

It is also known that whenever dn(K)X ≤C n−r , n ≥ 1 with r > 0, then there is a constant
C ′ such that

εn(K)X ≤C ′n−r , n ≥ 1. (1.42)
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12 Chapter 1. The Theoretical Foundation of Reduced Basis Methods

This follows from Carl’s inequality (see [20]).
In general, it is not possible to compare the non linear manifold widths to entropy.

However, for the widths of (1.36), we have the same result as (1.42) (see [26]).

1.5 Comparing Widths and Entropies of UA with those ofA
Let us return our discussion to numerical methods for UA . In trying to understand
how well numerical methods can perform in resolvingUA , we would like to know the
entropies and widths ofUA . Since we only know this set through the parameter setA ,
the first question we would like to answer is whether we can bound the widths of UA
by those ofA . The widths and entropies ofA are usually more transparent and so such
bounds give a good indication of how well reduced basis methods might perform. In this
section, we shall discuss what is known about such comparisons.

1.5.1 Comparing Entropies

One can utilize the perturbation results (1.9) and (1.13) to give a comparison of the en-
tropies of the two classesA andU =UA . We place ourselves in the following situation.
We assume that 2≤ q ≤∞ is a value for which the Lq (D) stability is known to hold for
A . It follows that any ε cover ofA in the Lq (D) norm given by balls B(ai ,ε)will induce
a C0ε cover ofU by the balls B(uai

,C − 0ε) in the H 1
0 (D) topology. Therefore, we have

εn(UA )H 1
0 (D)
≤C0εn(A )Lq (D)

, n ≥ 1. (1.43)

It now becomes an interesting question of whether the entropy numbers ofUA could
actually be much better than those ofA . We will now show why, in general, we cannot
expect this to be the case. We consider the case q = 2 and d = 1. Our goal is to find an
f and many classesA for which we can reverse (1.43) and thereby see that the entropy
of UA is not noticeably better than that ofA , at least in general. We consider the one
dimensional case D = [0,1], where the PDE is simply

−[au ′]′ = f , u(0) = u(1) = 0. (1.44)

We will specify a right side f as we proceed. Let F (x) :=−
x
∫

0
f (s)d s . Then given a,

ua =

x
∫

0

a−1(s)[F (s)− ca]d s , ca :=

1
∫

0

a−1(s)F (s)d s . (1.45)

Since we are allowed to choose f , we are allowed to choose F as follows. We take F to
be a smooth function which is odd with respect to x = 1/2 and satisfies F (0) = F (1/2) = 0;
F is increasing on [0,1/6]; F (x) = +1 on J := [1/6,1/3] and F is decreasing on [1/3,1/2].
We fix this F and assume the following aboutA .

Assumptions on A : Each a ∈ A is even with respect to 1/2 and the class A0 of all
a ∈A restricted to J satisfies εn(A0)L2(J )

≥ c0εn(A )L2(D)
for an absolute constant c0.

Returning to (1.45), we see that u ′a is ≥ 1/a on the interval J := [1/6,1/3]. On J we
can now write for any two such a, ã

a− ã = F /u ′a − F /u ′ã =
F

u ′a u ′ã
[u ′ã − u ′a]. (1.46)
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This gives the bound on J ,

‖a− ã‖L2(J )
≤C‖ua − uã‖H 1

0 (D)
, (1.47)

and therefore,
εn(A )L2(J )

≤Cεn(K)H 1
0 (D)

, n ≥ 1, (1.48)

and therefore we have reversed (1.43), in the case q = 2.

1.5.2 Comparing Kolmogorov Widths

There is a general method (see [6]) for bounding the Kolmogorov n-width ofUA in terms
of the corresponding width ofA . Among other results, it gives the following theorem.

Theorem 1.1. IfA is any set contained in L∞(D) whose Kolmgorov widths satisfies

dn(A )L∞(D) ≤C0n−α, n ≥ 1, (1.49)

for some α > 1 and constant C0, then for each β<α− 1,

dn(UA )H 1
0 (D)
≤C1n−β, n ≥ 1, (1.50)

for a constant C1 depending only on C0 and α.

We can give some ideas behind its proof which rests on the following result from [9]:

Theorem 1.2. IfA is defined by the affine model (1.15) where the ψ j , j = 1,2, . . . , satisfy
(‖ψ j‖L∞

)∞j=1 ∈ `p with p < 1, then dn(UA )≤M n−1+1/p .

We can now sketch of how one proves Theorem 1.1. From our assumption onA , we
can find, for each k ≥ 0, linear spaces Zk of dimension 2k which satisfy

dist(A ,Zk )L∞(D) ≤C02−kα, k = 0,1,2, . . . . (1.51)

Hence, for each a ∈A there are functions gk ∈ Zk such that

‖a− gk‖L∞(D)
≤C02−kα, k = 0,1, . . . , (1.52)

It follows that

a = g0+
∑

k≥1

[gk − gk−1] =
∞
∑

k=0

hk , and ‖hk‖L∞(D)
≤ 2C02−kα, k = 0,1, . . . , (1.53)

where hk := gk − gk−1 and g−1 := 0. Let us note that each hk is in the linear space Yk :=
Zk−1+Zk which has dimension mk ≤ 2k + 2k−1.

We now use the following consequence of Auerbach’s basis theorem. There is a basis
ψ1,k . . . ,ψmk ,k for Yk , normalized so that ‖ψ j ,k‖C (D) = 1 for all j and such that its dual
basis also has norm one. So each hk can be written hk =

∑mk
j=1 c j ,kψ j ,k and the coefficients

satisfy
max

1≤ j≤mk

|c j ,k | ≤ ‖hk‖L∞(D)
≤ 2C02−kα, k = 1,2, . . . . (1.54)
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14 Chapter 1. The Theoretical Foundation of Reduced Basis Methods

This gives us the decomposition

a =
∞
∑

j=1

y jψ j , , j = 1,2, . . . , |y j | ≤ 1, (1.55)

where each ψ j is a renormalization of one of the ψi ,k and satisfies

‖ψ j‖C (D) ≤M0C0 j−α, j = 1,2, . . . . (1.56)

Notice that a function ψ j is possibly repeated in the sum (1.55).
We now choose K so that

M0

∑

k>K

‖ψ j‖C (D) ≤ r/2. (1.57)

This means that
∑

j<K ‖ψ j‖C (D) ≥ r/2. It can be shown (details not given) that we can
find a finite number, say N , of ai each of the form ai =

∑

1≤ j≤K b jψ j , such that for any
a ∈A , there is an ai for which

a = ai +
∞
∑

j=1

y jψ j , (1.58)

where |y j | ≤ 1 and moreover, each of the ai (x)≥ r/4 for x ∈D .
In other words,UA is contained in a union of a finite number N ofUAi

where each
setAi is of the form (1.58). Because of (1.56), (‖ψ j‖L∞(D)

∈ `p for each p > 1/α. This
allows us to apply Theorem 1.2 and derive Theorem 1.1.

1.5.3 Comparing Non Linear Widths

We shall see in the sections that follow, that non linear numerical methods for reduced
modeling are not as well developed as their linear counterparts. Nevertheless, it is very
desirable to have bounds on the non linear widths ofUA derived from the corresponding
widths ofA . This would help us understand what non linear methods can possibly bring
to the table and also perhaps help in the development of non linear methods for reduced
modeling. In this section, we look at what we know about such comparisons.

Let us begin with the library width dn,N defined in (1.36). We assume that for each
n, the library has N = nA bases with A a fixed integer. Then, building on Theorem 1.1,
one can prove (see [6]) that wheneverA satisfies

dn,N (A )L∞(D) ≤C n−α, n ≥ 1, (1.59)

for some α > 1, then for any β<α− 1, we have

dn,N (UA )H 1
0 (D)
≤C n−β, n ≥ 1. (1.60)

For non linear manifold widths, general comparisons are not known. However, there
is a setting, which is sometimes applicable, in which we can derive such comparisons.
This setting rests on the following assumption.

Uniqueness Assumption: We assume that the right side f and the classA of diffusion
coefficients have the property that whenever ua = uã with a, ã in A , then a = ã almost
everywhere.



i
i

“marseille_survey_siam” — 2015/12/10 — 10:10 — page 15 — #17 i
i

i
i

i
i
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As we shall discuss in §1.6.2, this assumption is satisfied, for example, for the geometric
model. Assume now that the Uniqueness Assumption is valid and that for the given f
and a value of q , the stability bound (1.11) holds. Recall that this stability bound always
holds for q = 2 p

p−2 , and a certain range of p ∈ [2, P ] provided f ∈W −1(Lp (D)). Consider
the mapping Φ from UA into A which takes u = ua into a. Since A is assumed to
be compact in Lq (D) and the mapping a→ ua is known to be continuous (see 1.11), we
know from elementary principles that the mapping Φ is also continuous as a mapping
from H 1

0 (D) to Lq (D).
We now prove that under these assumptions, we have

δn(UA )H 1
0 (D)
≤Cδn(A )Lq (D)

. (1.61)

Given n and ε= δn(A )Lq (D)
, we can choose continuous mappings M , b as in the defini-

tion of non linear widths so that b :A →Rn and M :Rn→ Lq (D) and

sup
a∈A
‖a−M (b (a))‖Lq (D)

≤ 2ε. (1.62)

Now, we want to construct appropriate mappings forUA . We can take for z ∈Rn ,

M̃ (z) := uM (z). (1.63)

Since M is continuous as a mapping into Lq (D), the Lq stability (1.11) gives that M̃ is also

continuous as a mapping into H 1
0 (D). Finally, we define b̃ :UA →Rn by

b̃ (u) = b (Φ(u)), u ∈A . (1.64)

Since Φ is continuous fromUA (in the H 1
0 (D) topology) toA in the Lq topology and b

is continuous fromA to Rn , we have that b̃ is also continuous.
Given u ∈UA , we have

‖u− M̃ (b̃ (u))‖H 1
0 (D)
= ‖uΦ(u)− uM (Φ(u))‖H 1

0 (D)
≤C‖Φ(u)−M (Φ(u))‖Lq (D)

≤ 2Cε. (1.65)

Since ε= δn(A )Lq (D)
, we have proven (1.61).

1.6 Widths of our Two Model Classes
The results of the preceding section were directed at giving general a priori guarantees
about the performance of linear and non linear methods for reduced modeling. Since, the
guarantees do not assume any particular structure of the setA , it may be that they can be
improved in settings where we assume a specific structure forA . We now discuss what
is known in this regard for our two model classes of elliptic equations.

1.6.1 Affine Model

We recall that for the affine model, we assume that

a(x, y) = a(x)+
∑

j≥1

y jψ j (x), (1.66)
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where the y j , j ≥ 1, are parameters in [−1,1]. We can always rearrange the indices so that
the sequence b j := ‖ψ j‖L∞(D)

, j = 1,2 . . . , is decreasing. For canonical representation
systems {ψ j }, such as wavelets or Fourier, the rate of decrease of (b j ) to zero is related to
the smoothness of a(x, y)as a function of x. Indeed, smoothness condtions on a translate
into decay conditions on the (b j ).

Let us note that if (b j ) ∈ `p , p < 1, then

sup
y∈U
‖a(·, y)−

n
∑

j=1

y jψ j‖L∞(D)
≤

∞
∑

j=n+1

b j ≤ b 1−p
n+1

∞
∑

j=n+1

b p
j ≤C n1−1/p . (1.67)

Here we have used the fact that since (b j ) is decreasing and in `p , we must have b p
n ≤

C n−1, n ≥ 1.
The result (1.67) shows that the Kolmogorov widths ofA decays like O(n1−1/p ):

(b j ) ∈ `p =⇒ dn(A )≤C n1−1/p , n ≥ 1. (1.68)

We could now use Theorem 1.1 to conclude that dn(UA )H 1
0 (D)
≤C n2−1/p−ε, for all ε > 0.

However, we have already pointed out in Theorem 1.2 that this result is not optimal for
the affine case. In fact, we used this stronger result in the derivation of Theorem 1.1. We
give a little more details to illuminate how the stronger result Theorem 1.2 is proved.

LetF be the set of all sequences ν = (ν1, ν2, . . . ) such that ν has finite support and each
entry in ν is a nonnegative integer. So |ν | =

∑

j≥1 |ν j | is always finite when ν ∈ F . If
α= (α j ) j≥1 is a sequence of positive numbers, we define for all ν ∈F

αν :=
∏

j≥1

α
ν j

j .

In [9], we showed the following theorem.

Theorem 1.3. If (b j ) ∈ `p for some p < 1, then

u(x, y) =
∑

ν∈F
cν (x)y

ν , (1.69)

where the functions cν (x) are in H 1
0 (D) and (‖cν‖H 1

0 (D)
) ∈ `p for the same value of p.

The line of reasoning for proving this theorem is the following. The mapping F : y 7→
u(·, y) takes U into H 1

0 (D). One shows this map is analytic and has a Taylor expansion
as a function of y. The complications arise because y consists of an infinite number of
variables and the mapping is Banach space valued. The proof of analyticity is not difficult.
For a fixed y ∈U , we know that for all v ∈H 1

0 (D)
∫

D

a(x, y)∇u(x, y)∇v(x)d x =
∫

D

f (x)v(x)d x.

Differentiating this identity with respect to the variable y j gives

∫

D

a(x, y)∇∂y j
u(x, y)∇v(x)d x +

∫

D

ψ j (x)∇u(x, y)∇v(x)d x = 0. (1.70)
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One then shows that more generally,
∫

D

a(x, y)∇∂ νy u(x, y)∇v(x)d x +
∑

{ j : ν j 6=0}
ν j

∫

D

ψ j (x)∇∂
ν−e j

y u(x, y)∇v(x)d x = 0, (1.71)

where e j is the Kronecker sequence with value 1 at position j and 0 elsewhere. The iden-
tity (1.71) is proved by induction on |ν | using the same idea as used in deriving (1.70).
From (1.71) it is not difficult to prove

‖∂ νy u(·, y)‖V ≤C0

∑

{ j : ν j 6=0}
ν j b j (|ν |−1)!b ν−e j =C0(

∑

{ j : ν j 6=0}
ν j )(|ν |−1)!b ν =C0|ν |!b

ν , ν ∈F .

One now proves the representation (1.69) with cν (x) := D ν u(x,0)
ν ! (see [8, 9] for details).

The proof that (‖cν‖H 1
0 (D)
) ∈ `p whenever (‖ψ j‖L∞(D)

) ∈ `p is far more difficult.
Now let us see how the above theorem gives an estimate for the Kolmogorov n-width

of the classA .

Corollary 1.4. For the affine modelA , whenever (‖ψ j‖L∞
) ∈ `p , p < 1, the set UA has

n-widths
dn(A )H 1

0 (D)
≤C n1−1/p , n ≥ 1, (1.72)

with C depending only on p and the ellipticity constants r, R.

Indeed, from the fact that (‖cν‖H 1
0 (D)
) ∈ `p , one can use similar arguments to that in

(1.67) to prove that there is a set Λ⊂F with #(Λ) = n so that

sup
y∈U
‖u(·, y)−

∑

ν∈Λ
cν (x)y

ν‖H 1
0 (D)
≤C n1−1/p . (1.73)

This shows that the n-dimensional space V := span{cν : ν ∈ Λ} approximates A with
accuracy C n1−1/p and therefore dn(A )H 1

0 (D)
≤C n1−1/p .

One important observation about this bound for the entropy is that we have broken
the curse of dimensionality. Indeed, the parameters y1, y2, . . . are infinite. In typical ap-
plications, the parameters are finite in number, say d , but then this result shows that the
exponent of n in this bound does not depend on d .

1.6.2 The Geometric Model

Although, as we shall see, the results about numerical performance for this example are
not definitive, it is still instructive to discuss what is known and which questions are still
unresolved in the case of the geometric model. Following our usual paradigm, let us first
considerA and try to understand its complexity. It makes no sense to consider the ap-
proximation of the functions a ∈A in the L∞(D) norm since each of these functions is
discontinuous and therefore any approximation would have to match these discontinu-
ities exactly. On the other hand, we can approximate a in an Lq (Ω) norm and use the
perturbation result (1.9). For the convex domain D = [0,1]2, the best possible range of
q for the perturbation theorem is Q ≤ q ≤∞, where the smallest value of Q depends on
the constants r, R in the uniform ellipticity assumption (see [4]).

We know from our general theory that if we measure the complexity ofA andUA
in the sense of their entropy then (1.43) always holds. One can rather easily compute the
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entropy numbers ofA in Lq (D) for any q ≥ 2:

εn(A )Lq (D)
∼ n−1/q , n ≥ 1. (1.74)

From our general comparison (1.43), this gives

εn(UA )H 1
0 (D)
≤C n−1/q , n ≥ 1, (1.75)

with the best bound holding for q =Q.
Let us next discuss what is known about linear widths forA andUA . The following

bounds for n-widths can be shown with appropriate constants C1,C2 > 0:

C2n−
1

2q ≤ dn(A )Lq (D)
≤C1n−

1
2q , n ≥ 1, (1.76)

with C1,C2 absolute constants. To prove the upper estimate, we consider the dictionary
Dn which consist of the functions χR, where R= [(i−1)/n, i/n)×[0, j/n], 1≤ i , j ≤ n.
Given a function a ∈A , corresponding to the Lipschitz functionϕ, and a value 1≤ i ≤ n,
we let ji be the largest integer such that

ji
n
≤ ϕ(x), x ∈ [ i − 1

n
,

i
n
]. (1.77)

We consider the function gn := 1+
∑

i=1n χRi
with Ri := [(i − 1)/n, i/n)× [0, ji/n],

1≤ i ≤ n. The function g agrees with a except on a set of measure ≤ 1/n. Hence,

‖a− g‖Lq (D)
≤ n−1/q . (1.78)

Since the space spanned by the Dn has dimension n2, we obtain the upper estimate.
The lower estimate is a little more intricate. We first consider the case q = 2. Let

V ⊂ L2(D) be any fixed linear space of dimension N ≤ n2/2 with n a two power and let
ϕ1, . . . ,ϕN be an orthonormal system for V . We assume dist(A ,V )L2(D)

≤ ε and derive a
bound from below for ε.

We will first construct some functions that can be approximated well by V . Let ψk
be the piecewise linear function which is zero outside Ik := [k/n, (k+1)/n] and is the hat
function with height 1/(2n) on Ik . Then, for any j > 0 and any set Λ⊂ {0,1, . . . , n− 1},
the function g j ,Λ := j/n+

∑

k∈Λψk is in Lip11. The function

f j ,Λ := ag j ,Λ
− ag j ,Λc

, (1.79)

can be approximated to accuracy 2ε by the space V . Each of these functions has support in
the strip j ≤ y ≤ j+1 and has norm ‖ f j ,Λ‖2

L2(D) = 1/(3n). Obviously, these functions with
different values of j are orthogonal. Moreover, for a fixed j , we can choose n different
sets Λ such that these functions are also orthogonal. Indeed, we take Λ= {0,1, . . . , n− 1}
and then the other n − 1 choices corresponding to where the Walsh functions of order
n are positive. In this way, we get n2 orthogonal functions. We define the functions
h1, . . . , hn2 where each h j is one of the functions

p
3n fi ,Λ with the n2 different choices of

these function in (1.79). Hence, these functions are an orthonormal system and each of
these functions can be approximated to accuracy 2ε

p
3n.

We consider the n2×N matrix B whose i , j entry is bi , j := |〈hi ,ϕ j 〉|2. Then, each of
the N columns has sum at most 1. Hence, one of the rows i∗ has sum at most N n−2 ≤ 1/2.
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This means that in approximating hi∗ by the elements of V in the L2(D)norm, we incur an
error of at least 1/

p
2. It follows that 2ε

p
3n ≥ 1/

p
2. In other words, ε≥ [2

p
6]−1n−1/2.

Since the only restriction on N is that N ≤ n2/2, we obtain

dn2(A )L2(D)
≥C n−1/2, n ≥ 1, (1.80)

with C an absolute constant. The lower bound in (1.76) for q = 2 follows.

Let us mention, without proof, that the lower bound dn(A )Lq (D)
≥ n−

1
2q , for 2≤ q ≤

∞, can be proved from the L2 result by using an interpolation argument.
The above results describe how well we can approximateA and say nothing about ap-

proximatingUA . Indeed, our only direct estimate for dn(UA )H 1
0 (D)

in terms of dn(A )L2(D)

is that given by Theorem 1.1. But multiplying dn(A )L2(D)
by n does not give a decay to

zero and therefore Theorem 1.1 gives a useless estimate. So, it remains an open problem
to determine the n-width ofUA for the geometric model.

1.7 Numerical Methods for Parametric Equations
Let us now turn our attention to numerical methods for solving a family of parametric
equations with diffusion coefficients coming from the set A . We wish to construct a
numerical solver such that given a query a ∈ A , it produces a function ûa which is a
good approximation to ua in the H 1

0 (D) norm.

1.7.1 Online and Offline Costs

This construction of a solver is decoupled into two tasks.

Offline costs: This is the cost of developing the numerical method which is tailor made
forA . For example, in linear methods, it is the computational cost needed to find a good
n-dimensional subspace Vn contained in H 1

0 (D) which will be used to build an approx-
imation to ua when given a query a ∈ A . For a non linear method based on n-term
approximation from a dictionary of size N , it would be the cost in finding a good dictio-
nary. Notice that the offline cost is a one time investment for the classA and does not
include the task of actually finding an approximation to ua given a query a ∈A .

We should mention that in some applications, we are not so much interested in finding
an approximation ûa to ua as we are in the evaluation of a linear functional ` on H 1

0 (D)
to the solution ua This is then the problem of developing a numerical method which
approximates the real valued function L(a) = `(ua) given a query a ∈ A . In this case,
the offline costs would include the building of an approximation L̂ to L. We will not say
much more about this important second problem.

Online costs: This is the cost of implementing the solver which was built offline for find-
ing an approximation ûa to ua given a query a. For linear methods, this approximation
is usually taken as the Galerkin projection onto Vn , although other projectors may also
be reasonable in some scenarios. The Galerkin projector gives the best approximation to
ua from Vn in the H 1

0 (D ,a) norm. Given the linear space Vn , the Galerkin projection
constructs ûa ∈Vn as the solution to the discrete system of equations

〈ûa , v〉a = 〈 f , v〉, ∀v ∈Vn , (1.81)

where 〈·, ·〉a is the H 1
0 (D ,a) inner product. If we choose a basis ϕ1, . . . ,ϕn for Vn , then
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ûa =
∑n

j=1 c jϕ j where the coefficients c= (c j )
n
j=1 satisfy

Ac= f, (1.82)

where A= (ai j )
n
i , j=1, ai j := 〈ϕi ,ϕ j 〉a , is the so-called stiffness matrix and f := ( fi )

n
i=1, with

fi := 〈 f ,ϕi 〉, i = 1, . . . , n, is the discretization of the right side f . From the ellipticity
assumption, the matrix A is positive definite and so the system is efficiently solved using
standard numerical solvers for linear systems. The performance of this numerical method
is usually measured by the error in the H 1

0 (D ,a) norm:

‖ua − ûa‖H 1
0 (D ,a) = dist(ua ,Vn)H 1

0 (D ,a) ≈ dist(ua ,Vn)H 1
0 (D)

. (1.83)

When the Galerkin projection is used, then give the query a ∈A , one must assemble the
stiffness matrix and then solve the corresponding matrix problem. While the assembly
of the matrix is a serious problem, we will largely ignore it here since we have nothing to
add over what is already known.

Relevance of Entropy in Online - Offline Comparisons

Entropy suggests the following extreme setting for the online-offline comparisons. Let
ε := Cεn(A )Lq (D)

and numerically find a cover {B(ai ,ε)}Ni=1, N = 2n for A and then
compute offline the solutions uai

, i = 1, . . . ,N . SinceA is known to us, we can usually
find the cover ofA by some form of piecewise polynomial approximation followed by
quantization of the coefficients of the approximation. The offline costs would be propor-
tional to N m where m is the computational cost in employing an off the shelf solver to
find an approximation ûai

to uai
accurate to error ε.

For the online computation, given a query a, we find an approximation ai to a using
piecewise polynomial approximation and quantization. This is then followed by a look
up table to find the approximation ûai

as the approximation to ua . The accuracy of this
method is Cεn(A )Lq (D))

. The offline cost is exceedingly high but the online cost is very
low since it does not involve a pde solve.

The point of this example is to show that it is not only the online cost of the solver
that matters. One has to take into consideration the offline investment costs which are
extreme in the above example. It is not clear exactly how this balancing should be done
but it would be beneficial to quantify this in someway in order to advance the theory of
reduced basis methods.

1.7.2 Finding a Good Linear Subspace

The central question in developing linear methods is how to find a good choice for the
finite dimensional space Vn? Since we want Vn to be used for all a ∈ A , it should be
efficient at approximating all of the elements inUA . Recall that all of the norms ‖·‖H 1

0 (D ,a)

are equivalent to ‖ · ‖H 1
0 (D)

. So essentially, the best choice for Vn is a subspace of H 1
0 (D)

which achieves the Kolmogorov width dn(UA )H 1
0 (D)

. Of course finding such a subspace
may be difficult but it serves as a benchmark for the optimal performance we can expect.

One of the prominent methods for finding a good subspace are Reduced Basis Methods
(RBM) and are a well studied subject [5, 21, 22, 24, 25, 27]. The general philosophy of
such methods is that one is willing to spend high computational costs to determine of-
fline a good subspace Vn . Typically, the space Vn is spanned by n functions uai

∈ UA ,
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i = 1, . . . , n. These functions are called snapshots ofUA . The most popular method for
finding these snapshots is the following intriguing greedy algorithm introduced first in
[27]. While we are primarily interested in this algorithm in the case of a compact set K of
a Hilbert space (in our case K =UA and the Hilbert space is H 1

0 (D)), we will formulate
the algorithm for any Banach space X .

Let X be a Banach space with norm ‖ · ‖ := ‖ · ‖X , and let K be one of its compact
subsets. For notational convenience only, we shall assume that the elements f of K satisfy
‖ f ‖X ≤ 1. We consider the following greedy algorithm for generating approximation
spaces for K .

The Pure Greedy Algorithm: We first choose a function f0 such that

‖ f0‖=max
f ∈K
‖ f ‖. (1.84)

Assuming { f0, . . . , fn−1} and Vn := span{ f0, . . . , fn−1} have been selected, we then take
fn ∈K such that

dist( fn ,Vn)X =max
f ∈K

dist( f ,Vn)X , (1.85)

and define

σn := σn(K)X := dist( fn ,Vn)X := sup
f ∈K

inf
g∈Vn

‖ f − g‖. (1.86)

This greedy algorithm was introduced, for the case X is a Hilbert space in [21, 22]. In
numerical settings, one cannot find the f j exactly and also estimates for error needed in
this algorithm are also not known precisely. This leads one to consider weaker forms of
this algorithm which match better their application.

Weak greedy algorithm We fix a constant 0< γ ≤ 1. At the first step of the algorithm,
one chooses a function f0 ∈K such that

‖ f0‖ ≥ γσ0(K)X :=max
f ∈K
‖ f ‖.

At the general step, if f0, . . . , fn−1 have been chosen, we set Vn := span{ f0, . . . , fn−1}, and

σn( f )X := dist( f ,Vn)X .

We now choose fn ∈F such that

σn( fn)X ≥ γmax
f ∈K

σn( f )X , (1.87)

to be the next element in the greedy selection. Note that if γ = 1, then the weak greedy
algorithm reduces to the greedy algorithm that we have introduced above.

Notice that similar to the greedy algorithm, (σn(K)X )n≥0 is also monotone decreasing.
It is also important to note that neither the Pure Greedy Algorithm or the Weak Greedy
Algorithm give a unique sequence ( fn)n≥0, nor is the sequence (σn(K)X )n≥0 unique. In all
that follows, the notation reflects any sequences which can arise in the implementation
of the weak greedy selection for the fixed value of γ .
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1.7.3 Performance of the Weak Greedy Algorithm

We are interested in how well the space Vn , generated by the weak greedy algorithm,
approximates the elements of K . For this purpose we would like to compare its per-
formance with the best possible performance which is given by the Kolmogorov width
dn(K)X of K . Of course, if (σn)n≥0 decays at a rate comparable to (dn)n≥0, this would
mean that the greedy selection provides essentially the best possible accuracy attainable
by n-dimensional subspaces. Various comparisons have been given between σn and dn .
An early result in this direction, in the case that X is a Hilbert spaceH , was given in [5]
where it was proved that

σn(K)H ≤C n2n dn(K)H , (1.88)

with C an absolute constant. While this is an interesting comparison, it is only useful if
dn(K)H decays to zero faster than n−12−n .

Various improvements on (1.88) were given in [1], again in the Hilbert space setting.
We mention two of these. It was shown that if dn(K)H ≤C n−α, n = 1,2, . . . , then

σn(K)H ≤C ′αn−α. (1.89)

This shows that in the scale of polynomial decay the greedy algorithm performs with the
same rates as n-widths. A related result was proved for sub-exponential decay. If for some
0<α≤ 1, we have dn(K)H ≤C e−cnα , n = 1,2, . . . , then

σn(K)H ≤C ′αe−c ′αnβ , β=
α

α+ 1
, n = 1,2, . . . . (1.90)

These results were improved in [14] and extended to the case of a general Banach space
X as we are now discussing. We will outline what is known in this direction and sketch
how these results are proved in the following section.

1.7.4 Results for a Banach Space

The analysis of the greedy algorithm is quite simple and executed with elementary results
from linear algebra. We provide a little of the details since this may help develop the
intuition of the reader. A core result for the analysis of greedy algorithms is the following
lemma from [14].

Lemma 1.5. Let G = (gi , j ) be a K×K lower triangular matrix with rows g1, . . . ,gK , W be
any m dimensional subspace of RK , and P be the orthogonal projection of RK onto W . Then

K
∏

i=1

g 2
i ,i ≤

¨

1
m

K
∑

i=1

‖Pgi‖
2
`2

«m¨
1

K −m

K
∑

i=1

‖gi − Pgi‖
2
`2

«K−m

, (1.91)

where ‖ · ‖`2
is the Euclidean norm of a vector in RK .

Proof. We choose an orthonormal basis ϕ1, . . . ,ϕm for the space W and complete it into
an orthonormal basis ϕ1, . . . ,ϕK for RK . If we denote by Φ the K ×K orthogonal matrix
whose j -th column is ϕ j , then the matrix C :=GΦ has entries ci , j = 〈gi ,ϕ j 〉. We denote
by c j , the j -th column of C . It follows from the arithmetic geometric mean inequality
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for the numbers {‖c j‖2
`2
}m

j=1 that

m
∏

j=1

‖c j‖
2
`2
≤

(

1
m

m
∑

j=1

‖c j‖
2
`2

)m

=

(

1
m

m
∑

j=1

K
∑

i=1

〈gi ,ϕ j 〉
2

)m

=
¨

1
m

K
∑

i=1

‖Pgi‖
2
`2

«m

.

(1.92)
Similarly,

K
∏

j=m+1

‖c j‖
2
`2
≤

(

1
K −m

K
∑

j=m+1

‖c j‖
2
`2

)K−m

=
¨

1
K −m

K
∑

i=1

‖gi − Pgi‖
2
`2

«K−m

.(1.93)

Now, Hadamard’s inequality for the matrix C and relations (1.92) and (1.93) result in

(detC )2 ≤
K
∏

j=1

‖c j‖
2
`2
≤
¨

1
m

K
∑

i=1

‖Pgi‖
2
`2

«m¨
1

K −m

K
∑

i=1

‖gi − Pgi‖
2
`2

«K−m

. (1.94)

The latter inequality and the fact that detG =
K
∏

i=1

gi ,i and |detC |= |detG| gives (1.91).

Let us now see how this lemma is utilized to derive convergence results for the greedy
algorithm. We will for the moment restrict ourselves to the case of a Hilbert space and
the weak greedy algorithm with constant γ . Later, we shall say what changes are made
when X is a general Banach space.

Note that in general, the weak greedy algorithm does not terminate and we obtain
an infinite sequence f0, f1, f2, . . . . In order to have a consistent notation in what follows,
we shall define fm := 0, m > N , if the algorithm terminates at N , i.e. if σN (K)H = 0.
By ( f ∗n )n≥0 we denote the orthonormal system obtained from ( fn)n≥0 by Gram-Schmidt
orthogonalization. It follows that the orthogonal projector Pn fromH onto Vn is given
by

Pn f =
n−1
∑

i=0

〈 f , f ∗i 〉 f
∗

i ,

and, in particular,

fn = Pn+1 fn =
n
∑

j=0

an, j f ∗j , an, j = 〈 fn , f ∗j 〉, j ≤ n.

There is no loss of generality in assuming that the infinite dimensional Hilbert spaceH
is `2(N∪{0}) and that f ∗j = e j , where e j is the vector with a one in the coordinate indexed
by j and is zero in all other coordinates, i.e. (e j )i = δ j ,i .

We consider the lower triangular matrix

A := (ai , j )
∞
i , j=0, ai , j := 0, j > i .

This matrix incorporates all the information about the weak greedy algorithm on K . The
following two properties characterize any lower triangular matrix A generated by the
weak greedy algorithm with constant γ . With the notation σn := σn(K)H , we have:
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P1: The diagonal elements of A satisfy γσn ≤ |an,n | ≤ σn .

P2: For every m ≥ n, one has
∑m

j=n a2
m, j ≤ σ

2
n .

Indeed, P1 follows from

a2
n,n = ‖ fn‖

2−‖Pn fn‖
2 = ‖ fn − Pn fn‖

2,

combined with the weak greedy selection property (1.87). To see P2, we note that for
m ≥ n,

m
∑

j=n

a2
m, j = ‖ fm − Pn fm‖

2 ≤max
f ∈K
‖ f − Pn f ‖2 = σ2

n .

Remark 1. If A is any matrix satisfying P1 and P2 with (σn)n≥0 a decreasing sequence that
converges to 0, then the rows of A form a compact subset of `2(N∪{0}). If K is the set consisting
of these rows, then one of the possible realizations of the weak greedy algorithm with constant
γ will choose the rows in that order and A will be the resulting matrix.

Theorem 1.6. For the weak greedy algorithm with constant γ in a Hilbert space H and
for any compact set K, we have the following inequalities between σn := σn(K)H and dn :=
dn(K)H , for any N ≥ 0, J ≥ 1, and 1≤ m < J ,

J
∏

i=1

σ2
N+i ≤ γ

−2J
§ J

m

ªm § J
J −m

ªJ−m
σ2m

N+1d 2J−2m
m . (1.95)

Proof. We consider the J × J matrix G = (gi , j ) which is formed by the rows and columns
of A with indices from {N + 1, . . . ,N + J }. Each row gi is the restriction of fN+i to the
coordinates N + 1, . . . ,N +K . LetHm be the m-dimensional Kolmogorov subspace of
H for which dist(K ,Hm) = dm . Then, dist( fN+i ,Hm) ≤ dm , i = 1, . . . J . Let fW be the
linear space which is the restriction ofHm to the coordinates N+1, . . . ,N+J . In general,
dim(fW ) ≤ m. Let W be an m dimensional space, W ⊂ span{eN+1, . . . , eN+J }, such that
fW ⊂W and P and eP are the projections in RK onto W and fW , respectively. Clearly,

‖Pgi‖`2
≤ ‖gi‖`2

≤ σN+1, i = 1, . . . , J , (1.96)

where we have used Property P2 in the last inequality. Note that

‖gi − Pgi‖`2
≤ ‖gi − ePgi‖`2

= dist(gi ,fW )≤ dist( fN+i ,Hm)≤ dm , i = 1, . . . , J . (1.97)

It follows from Property P1 that

J
∏

i=1

|aN+i ,N+i | ≥ γ
J

J
∏

i=1

σN+i . (1.98)

We now apply Lemma 1.5 for this G and W , and use estimates (1.96), (1.97), and (1.98)
to derive (1.95).

Let us now indicate how one derives some of the performance results for the greedy
algorithm from this theorem.
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Corollary 1.7. For the weak greedy algorithm with constant γ in a Hilbert space H , we
have the following:

(i) For any compact set K and n ≥ 1, we have

σn(K)≤
p

2γ−1 min
1≤m<n

d
n−m

n
m (K). (1.99)

In particular σ2n(K)≤
p

2γ−1
p

dn(K), n = 1,2 . . . .
(ii) If dn(K) ≤ C0n−α, n = 1,2, . . . , then σn(K) ≤ C1n−α, n = 1,2 . . . , with C1 :=

25α+1γ−2C0.
(iii) If dn(K)≤C0e−c0nα , n = 1,2, . . . , then σn(K)≤

p

2C0γ
−1e−c1nα , n = 1,2 . . . , where

c1 = 2−1−2αc0,

Proof. (i) We take N = 0, J = n and any 1≤ m < n in Theorem 1.6, use the monotonicity
of (σn)n≥0 and the fact that σ0 ≤ 1 to obtain

σ2n
n ≤

n
∏

j=1

σ2
j ≤ γ

−2n
n n

m

om § n
n−m

ªn−m
d 2n−2m

m . (1.100)

Since x−x (1− x)x−1 ≤ 2 for 0< x < 1, we derive (1.99).
(ii) It follows from the monotonicity of (σn)n≥0 and (1.95) for N = J = n and any

1≤ m < n that

σ2n
2n ≤

2n
∏

j=n+1

σ2
j ≤ γ

−2n
n n

m

om § n
n−m

ªn−m
σ2m

n d 2n−2m
m .

In the case n = 2s and m = s we have

σ4s ≤
p

2γ−1
Æ

σ2s ds . (1.101)

Now we prove our claim by contradiction. Suppose it is not true and M is the first value
where σM (F )>C1M−α. Let us first assume M = 4s . From (1.101), we have

σ4s ≤
p

2γ−1
Æ

C1(2s)−α
p

C0 s−α =
p

21−αC0C1γ
−1 s−α, (1.102)

where we have used the fact that σ2s ≤C1(2s)−α and ds ≤C0 s−α. It follows that

C1(4s)−α <σ4s ≤
p

21−αC0C1γ
−1 s−α,

and therefore

C1 < 23α+1γ−2C0 < 25α+1γ−2C0,

which is the desired contradiction. If M = 4s+q , q ∈ {1,2,3}, then it follows from (1.102)
and the monotonicity of (σn)n≥0 that

C12−3α s−α =C12−α(4s)−α <C1(4s + q)−α <σ4s+q ≤ σ4s ≤
p

21−αC0C1γ
−1 s−α.

From this, we obtain
C1 < 25α+1γ−2C0,

which is the desired contradiction in this case. This completes the proof of (ii).
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(iii) From (i), we have

σ2n+1 ≤ σ2n ≤
p

2γ−1
Æ

dn ≤
p

2C0γ
−1e−

c0
2 nα =

p

2C0γ
−1e−c02−1−α(2n)α , (1.103)

from which (iii) easily follows.

Let us now comment on what happens when X is a general Banach space. The analysis
is quite similar to that above (see [14]) however there is some loss in the approximation
rate. The precise results are as follows:

(i) For any n ≥ 1 we have σ2n ≤ 2γ−1
p

ndn ,
(ii) If for α > 0, we have dn ≤C0n−α, n = 1,2, . . . , then for any 0<β<min{α, 1/2},

we have σn ≤C1n−α+1/2+β, n = 1,2 . . . , with

C1 :=max
�

C044α+1γ−4
�

2β+ 1
2β

�α

, max
n=1,...,7

{nα−β−1/2}
�

.

(iii) If for α > 0, we have dn ≤ C0e−c0nα , n = 1,2, . . . , then σn <
p

2C0γ
−1pne−c1nα ,

n = 1,2 . . . , where c1 = 2−1−2αc0. The factor
p

n can be deleted by reducing the constant
c1.

In particular, we see that in the estimates (i) and (ii), we lose a factor
p

n in approxi-
mation rate when compared with the Hilbert space case. It can be shown that in general,
this loss cannot be avoided [14].

1.7.5 Practical Considerations in the Offline Implementation of Greedy
Algorithms

Let us now return to the application of the above greedy algorithms to our parametric
PDE problem. On first glance, it appears that the offline implementation of this al-
gorithm is computationally not feasible, since it requires an accurate estimate of ‖ua −
PVn

ua‖H 1
0 (D)

for all a ∈ A . On the surface, this would require solving (1.1) for each a
which is of course what we are trying to avoid. Fortunately, as is well known, this norm
is equivalent to

S(a) := ‖ f − Pn ua‖H−1(D), (1.104)

which can be computed (since both f and Pn ua are available) without computing ua .
(We do not discuss the role of the constants in this equivalence, even though they are an
important issue.) We are still left with the problem of having to calculate this surrogate
quantity for all a. What one does in practice is the following.

We know that whatever accuracy we have for the discretization ofA in L∞(D) (or
Lq (D)) then this accuracy will be inherited byUA because of (1.8). Suppose a discretiza-

tion Ã ofA has accuracy ε and we find an a∗ ∈ Ã such that

S(a∗)≥C0ε, (1.105)

with C0 an appropriately large fixed constant (determined by the equivalency constants
for the surrogate). Then, we are guaranteed that this discretization is accurate enough
for the implementation of the weak greedy algorithm. Hence, we start with a coarse
discretization ofA and then decrease the resolution ε of the discretization until (1.105)
is satisfied.
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1.7.6 Summary on Performance of Reduced Bases

Let us summarize what we know about the performance of the weak greedy algorithm
for our two sample model classes.

Affine Model Class (see §1.3.1): Assume that (‖ψ j‖L∞(D)
) ∈ `p , for some p < 1. Then,

we know that

(i) dn(A )L∞(D) ≤C n1−1/p , n ≥ 1,
(ii) dn(UA )H 1

0 (D)
≤C n1−1/p , n ≥ 1,

(iii) The weak greedy algorithm generates spaces Vn such that σn(UA )H 1
0 (D)
≤ C n1−1/p ,

n ≥ 1.
Let us mention that an alternative to the construction of a good basis using the weak

greedy algorithm is to utilize a selection based on monotone sets (also known as lower
sets) as discussed in [10].

Geometric Model Class (see §1.3.2): Assume that the stability inequality (1.11) holds
for a value of q ∈ [2,∞). Then, we know that

(i) dn(A )Lq (D)
≤C n−

1
2q , n ≥ 1,

(ii) We do not know any estimate of the form

dn(UA )H 1
0 (D)
≤C n−α, n ≥ 1, (1.106)

for a value of α > 0.
(iii) If we could prove an estimate (1.106), then the weak greedy algorithm would generate
spaces Vn such that σn(UA )H 1

0 (D)
≤C n−α, n ≥ 1.

1.8 Non Linear Methods in Reduced Bases
Generally speaking, there is a large benefit to using non linear approximation in the con-
struction of numerical methods for pdes. Several interesting non linear approaches are
emerging: hp-reduced basis for elliptic problems [15], [16]; adaptive parameter partition-
ing [17]; reduced basis selection from dictionaries [19]; and local greedy by parameter
distance[23]. We are not aware of any definitive a priori analysis of such algorithms which
would substantiate the use of non linear methods. In this section, we make some heuristic
comments about the possible utilization of non linear methods in reduced modeling.

For the Affine Model, there seems to be no advantage in using non linear methods
since the manifoldUA is provably smooth. On the other hand, the case of the Geometric
Model seems ripe for the exploitation of non linear methods. We consider only this geo-
metric example in what follows in this section. We have seen that the linear Kolmogorov
widths ofA satisfy

dn(A )L2(D)
≥C n−1/4, n ≥ 1. (1.107)

This is a good indication that the same lower bound holds for the widths ofUA in H 1
0 (D),

although, as we have pointed out in the last section no such results have actually been
proven.

1.8.1 Entropy Numbers for the Geometric Model

As we have already noted in (1.74), the entropy numbers εn(A )Lq (D)
behave like n−1/q .

It follows from out comparison (1.43) that the entropy numbers εn(UA )H 1
0 (D)
≤C n−1/q .
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Figure 1.3. The basis functions φi , j with vertex (i/n, j/n). The line segments have slope ±1.

When q = 2, this shows a non linear performance of order O(n−1/2) is expected for ap-
proximatingUA .

1.8.2 Non Linear n-widths for the Geometric Model

Let us begin with our usual strategy of first trying to understand the non linear widths
of A in L2(D). We have already discussed the dictionary D which consists of the n2

functions χR, where R = [(i − 1)/n, i/n)× [0, j/n], 1 ≤ i , j ≤ n. We have pointed out
that each function a ∈A can be approximated to accuracy C n−1/2 in L2(D) by using n
elements ofD. Namely, any function a ∈A can be approximated by a sum 1+

∑

R∈ΛχR
with #(Λ) = n to accuracy C n−1/2 in L2(D). It follows that the dictionary widths defined
in (1.36) satisfy

dn,n2(A )L2(D)
≤C n−1/2, n ≥ 1. (1.108)

One disadvantage in using the dictionaryD when approximating the elements ofA is
that the dictionary elements themselves are not inA . However, it is possible to introduce
another dictionary D0 with n2 functions that actually come from A and when using
n-term approximation from D0 to approximate the elements of A , it still achieves the
bound C n−1/2 for error measured in L2(D). Namely, for each point (i/n, j/n) ∈ D , we
associate the functionsφi , j which is the characteristic of the region depicted in Figure 1.8.2
We let D0 := {φi , j , 1≤ i , j ≤ n. It is easy to see that any a ∈A can be approximated to
accuracy C n−1/2 by 1+χS , where S is the region under a piecewise linear function which
always has slopes ±1. Such a piecewise function can be written as a linear combination
of n-terms from D0 (see Figure 1.8.2).

Given the above results for the dictionary n-width ofA , one expects correspondingly
improved results for dn,n2(UA )H 1

0 (D)
. Unfortunately, they do not follow from anything

we know. The comparison (1.60) is to debilitating in this case since the factor n kills the
decay rate (n−1/2) in (1.108). We expect, however, that this is just a defect of our current
state of knowledge and that the following problem will have a positive solution.
Open Problem: Find n2 snapshots of UA such that any ua can be approximated to ac-
curacy C n−1/2 in H 1

0 (D) by using only n of these snapshots.
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Figure 1.4. On the left is a typical piecewise linear function with slopes ±1 and on the right
is a sample decomposition (the region below the red curve).

Let us now turn our discussion to manifold widths. The above dictionary widths
are not of the form of non linear approximation considered in the definition of the non
linear manifold width δn(K)L2(D)

. This can be remedied, as described in [13], by using
the famous Pontrjagin-Nöbling lemma on topological embeddings of complexes. We do
not go into this in detail here but remark that it allows us to construct mappings b and
M , of the form described above that achieve the same rate O(n−1/2). In other words, we
have

δn(A )L2(D)
≤C n−1/2. (1.109)

With this result in hand, we can use our general theory to see that at least for certain right
sides f , we have

δn(UA )≤ δn(A )L2(D)
≤C n−1/2. (1.110)

Indeed, this follows from (1.65) provided we show that A satisfies the uniqueness as-
sumption.

The following simple argument (provided to me by Andrea Bonito) shows that the
Uniqueness Assumption holds for our geometric classA , whenever the right side f is
nonzero almost everywhere. By a disjoint open finite covering (DOFC) of D , we mean
a collection of open set D j , j = 1, ...,K such that D = ∪K

j=1D j , D j open and Di ∩D j = ;
for i 6= j . Define

A0 :=

(

a =
K
∑

j=1

c jχD j
: c j ≥ r > 0, j = 1, . . . ,K

)

.

Then, clearlyA ⊂A0.
Now, for any a ∈A0, define ua ∈H 1

0 (Ω) as satisfying
∫

Ω

a∇ua · ∇v =
∫

Ω

f v, ∀v ∈H 1
0 (D).

Let a ∈ A0 and notice that for each set Ωi of the (DOFC) and for each x ∈ Di , there
exists a ball B(x,δ) of radius δ > 0 centered at x such that B(x,δ) ⊂⊂ Di . In this ball,
a is constant and the interior regularity property for elliptic problem implies that ua ∈
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C∞(B(x,δ)). In particular a satisfies−a∆ua = f in B(x,δ), which in turn implies∆ua 6=
0 a.e in D and

a =− f /∆ua a.e in D .

Now, given a and â inA with ua = uâ ∈H 1
0 (D)we realize using the above representation

that a = â a.e.
While the above result is a nice theoretical consequence, it does not provide a reason-

able numerical recipe for using non linear methods to solve the system of parametric pdes
for the geometric model, even if used in conjunction with the n-term approximation from
the dictionary of n2 elements used to approximateA . Indeed, given a query a, it would
identify an â which is a good n-term approximation to a but ask to solve for uâ . This
would not allow the offline preparation of n2 snapshots from which an n-term approxi-
mation would be constructed for ua . This returns us to the Open Problem stated above
(1.109).
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